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Abstract — In recent years, the number of Internet of
Things and Internet of Everything (IOT/IOE) paradigms has
increased significantly. The large number of devices
contributed to generate a huge amount of data (Big Data)
inserted in Smart City solutions, which are experiencing an
explosion of complexity, also due to the increment of protocols,
formats and providers. In this perspective it becomes essential
to create a data indexing infrastructure that can optimize the
performance of the system itself, for creating the so called data
shadowing on IOT and other data on cloud. Therefore, it is
fundamental to study paradigms to manage the indexing and
visual analytics a great variety of data including IOT/IOE. One
of the important aspects to be addressed for managing data in
the smart city context are: the uniform model, the performance
and scalability, response times in research, and the possibilities
of performing visual analytic such as data flow analysis and
drill down. All these needs imply the creation of a Smart
Solution capable of managing and analysing heterogeneous
kinds of data, providing a multitude of final applications based
on the type of user who requires a certain service. To this end,
in this paper, a unified model for IOT/IOE and data ingestion
is presented. In addition, two possible architectural solutions
have been implemented and compared in terms of
performance, resource consumption, reliability and visual
analytic tools for data flow. The solutions proposed for data
indexing and shadowing have been tested in the context of
Snap4City pilot Helsinki and Antwerp for smart city of EC
project Select4Cities.

Keywords — Smart City, lIoT/IoE, Big Data Infrastructure,
Big Data indexing, IOT data shadow.

I.  INTRODUCTION

Smart City solutions are strongly influenced by Internet
of Things (IoT) and Internet of Everything (IoE)
potentialities and technologies. The first wave of Smart City
was strongly focused on open data with solutions such as
CKAN [1], OpenDataSoft [2], mainly oriented on data sets
production, collection, publication and exchange. In some
cases, they provided access to effective datasets, by using
data integration and visualization tools which allowed the
creation of graphic charts, such as distributions, pies and
histograms, based on the values contained in the dataset. A
second wave of Smart City technologies proposed data
aggregators integrating various data sets in a unique model
and storage, to make them accessible via some Smart City

create an expert system on the city entities and their
relationships. A third wave arrived with the IoT/IoE
solutions. On the other hand, the present evolution of smart
city also demanded for Big Data techniques for the presence
of a great variety of heterogeneous data coming from
different and rapidly changing sources and on which the data
analytics is needed for predictions, decision support, etc.
Administrators need to know the progress of the state of their
city, for instance through the use of visual tools such as a set
of dashboards to be supported in the decision-making
processes [6]. The expectations of end users in receiving
information about city services are growing. Moreover,
citizens which are taking part of the evolutionary process of
a Smart City may contribute by providing their data, only if
the solution is respecting their privacy (on their data on
mobile App, [0T/IoE, Social Media, also more traditional
systems such as web pages forms, blogs, mail, etc.). In
addition, they are interested in receiving notifications,
suggestions to be involved in their city. Among the city
stakeholders, developers are interested in real-time logs of
activities and features of the data management system, which
may allow them to create new applications, for the
administrators and for the final users.

In order to manage the rapidly growing number of IoT
connected devices (sensors, actuators and various agents)
and the large amount of heterogeneous data produced in a
Smart City environment (representing a significant stress
case for the emerging Industry 4.0 paradigm), a Big Data
approach is necessary, in order to efficiently integrate data
and produce additional knowledge.

Thus, the aggregated data can be used to produce smart
services by generating predictions and suggestions for final
users and decision makers based on machine learning. These
kinds of solutions are adopted not only at research level, but
also in commercial activities (medium-sized and large
enterprises) [6]. Advantages of such approaches are
becoming increasingly evident both in economic terms
(reduction of costs, development of more competitive
products on the market, involvement of the greatest number
of possible buyers, etc.) and in technical aspects (e.g., energy
saving, use of safe and reliable infrastructures).

As a conclusion, the modern Smart City solutions must
be capable of: i) ingesting a variety of data coming from

APIs [3], [4]. The large variety of different and different providers and adopting different paradigms/
heterogeneous  formats and protocols used for data protocols, and formats, etc.; ii) aggregating, managing and
warchouse required the adoption of data mining indexing a Big amount of Data; iii) supporting Big Data

reconciliation algorithms in the data aggregation process to
enhance interoperability among tools and services, as well as
for connecting different representations of the same city
entities coming from different data sets and/or providers.
Besides, such data aggregation solutions also provide access
to aggregated data as Linked Data (LD), Linked Open Data
(LOD), coding data information in terms of RDF triples [5].
There are several advantages in creating a sort of knowledge
base for the city, since it can be regarded as the first step to

analytics; iv) providing a set of tools to the final users to
manage [oT devices, visualize the status of the city via a set
of dashboards, receive suggestions and recommendations,
log the system/device activities, etc. depending on their role,
needs and permissions.

The presented work has been realized in the context of
Snap4City Pilot, https://www.snap4city.org of Select4Cities
PCP European Commission project. Snap4City presents a
Smart City Big Data architecture enabling and supporting
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IoT/IoE, providing tools to ingest, process, enrich, visualize
and monitor Smart City data. It is evident, that from the
above discussion that the data management, indexing and
analysis is enabling a large amount of applications. In fact,
the data analytics and the decision making are viable only if
the data can be retrieve efficiently and taking into account all
data entities relationships. Therefore, the experiment
performed and reported in this paper, aimed at comparing
two different kinds of indexing solutions in terms of
performance, resource consumption, reliability and visual
analytic tools for data flow. The solutions proposed for data
indexing and shadowing have been tested in the context of
Snap4City pilot Helsinki and Antwerp for smart city of EC
project Select4Cities.

Thus, the paper is structured as follows. In Section II, the
main features of Snap4City requirements and architecture are
presented. Section III discusses the Unified Data Indexing
model and layer, and two possible solutions for its
implementation based on SolrCloud and Elasticsearch. In
Section IV, the comparison among these two solutions in
terms of performance, reliability and scalability are reported.
In Section V, the Dashboards realized to perform visual
analytics of the two different solutions are described and
compared (by using Banana and Kibana, respectively).
Conclusions are drawn in Section V1.

1L

The Snap4City solution allows to ingest and manage Big
Data coming from loT devices, applications and services,
and compute actions for users, for instance providing
notifications and a set of visual tools enabling the production
of interactive dashboards for data analytics and supporting
decision-making processes (useful for many different kinds
of users: Public Administrations, final users, developers etc.).
Ingested data are collected and aggregated in the Snap4City
Knowledge Base, connected to the Km4City multi domain
ontology, and indexed in order to speed up and facilitate data
retrieval actions. Snap4City allows also the creation of data-
driven applications, based on Microservices, exploiting
mobile and web apps, flows of processing data and IoT data
running on the platform [7].

A. General data flow

In a Smart City infrastructure many different kinds of
data flows have to be managed and analysed in real time for
value. The sources from which the data can be collected
could be typically classified into: IoT Devices, External
Services, Storages, as described in the following. After the
data ingestion (both IOT and External Services), the data
have to be hopefully managed uniformly to facilitate the
exploitation of data ingested and also of those produced by
the intermediate results or for predictions, heatmaps,
suggestions, etc. To this end, a semantic regularization
process is also needed. To this purpose, a number of
ontologies have been proposed [10], [11], while in the
context of Snap4City, Km4City ontology is used [14].
Finally, it has to be possible to perform on data flow with
respect to Storage: indexing and searches, data analytics,
visualize and render them with customized dashboards or
other visual tools etc., for business intelligence and/or visual
analytics.

SNAP4CITY REQUIREMENTS AND ARCHITECTURE

e IoT Devices (sensors and actuators) exploit many
different protocols, (e.g., MQTT, COAP, NGSI,

AMQP), most of which are data driven. The devices
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are usually connected through to pone or more IoT
Brokers, which manage subscription to their services
presenting APIs for subscribing to data updates (e.g.,
telemetry). IoT Brokers represent the main interface to
reach IoT Devices: subscribe, and in most cases also
updates, or for just monitoring the data flow without
addressing historical data. Most of the IoT Brokers are
typically capable to address only one communication
standard, such as: MQTT, COAP, AMQP, NGSI,
OneM2M, SigFOX; only few of them cope with
multiple protocols, and few of them support secure
connection in HTTPS/TLS with mutual authentication.
In a Smart City, the amount of data flows due to IoT
Devices may create a relevant traffic in the cloud
network and may need a certain computational workload
to justify the usage of IoT Edge devices, in which some
decentralized distributed resources can be allocated (for
instance, data analytics for estimating the average values
of environmental variables, to take local decision on
controlling the public light, to control the road directions
and signages) [8], [9].

e External Services are typically exploited by periodic
processes running on the infrastructure, typically called
ETL, Extract Transform Load. For example, for
collecting partial resulting data (typically static and real
time data) from third parties, providing data flows
entering into the infrastructure. Examples of External
Services are ITS (Intelligent Transport Systems) which
collect data regarding traffic flow sensors, Traffic flow
reconstruction, parking management, semaphore status,
connected drive, public transport data and status (e.g.
bus schedule, paths etc.); weather forecast and
environmental agencies; waste collectors; hospitals and
healthcare centres. External Services may provide data
and service access via APIs, Rest Calls, WS, FTP, etc.,
as well as trough upper level protocols such as: DATEX
11, OneM2M, etc. [9].

e Storage: are the data transfer activities performed by the
internal processes with respect to the different storages
in the infrastructure. For example, (i) to recover data to
perform data analytics, (ii) to save data into the storage
once collected from the external services, or computed

by Data Analytics processes.

In the first two cases, the data quality in input has to be
monitored in real time. For example, by detecting anomalies
with respect to the typical values, delay or missing
transmissions, strange ranges in the data, etc. The control of
the data arriving according can be performed on the basis of
the historical/typical data values and data description, but
also taking into account the data type. For example, by
estimating predictions and/or anomaly detections on the basis
of historical values, and/or by defining healthiness criteria
for each data flow, i.e., rules based on data retrieval
frequency, non-stationarities, conformity into bounds, etc.

In Figure 1, the main components of Snap4City solution
regarding data ingestion for data shadow and indexing are
reported. The architecture presents areas for: data ingestion
tools (IOT Brokers, External Services), data management
tools (storage for collecting raw data and results of
processing), data processing (including data analytics and
IOT applications), and finally, as in the focus of this paper,
the Back-End Architecture for data management, indexing.
Once the data are collected and indexed, they can be
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exploited by Smart City API, providing access to web and
mobile Apps and also to Dashboards.

AMMA & DevDash Back-End Architecture
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Fig. 1. Snap4City Indexing Back-End Architecture.

In the next paragraphs, a description of the main components
of the Back-End Architecture is provided:

NiFi is an enterprise data flow bus that allows to automate,
monitor and track dataflows among different systems, in a
safe and reliable way [12], [16]. NiFi tool has been adopted
in two instances to manage Big Data flows coming from both
10T Brokers and EventLogger.

e The first instance is capable to perform subscription to

all the IOT Devices via a set of IOT Brokers: MQTT,
NGS]I, etc., and thus it is exploited by the Data Shadow.
The second instance is dedicated to perform estimation
of Traffic Flow data. Not discussed in this paper.
In both cases, the NIFI processes need to semantically enrich
the received data with contextual information which are
recovered from the knowledge base. For example, static IOT
Devices can be enriched to quality control criteria on the
basis of their ID, which cannot be recovered from the 10T
Broker. In order to reduce the workload on the Knowledge
base, a cache has been installed.

Data-Shadow. The data shadow is a feature provided as a
plus by many IOT solutions for example AWS and 10T
Azure. Data shadow is a mandatory feature to allow access at
the IOT Device data when they are not sending a new data.
In fact, IOT devices are typically addressed as data driven
devices, and the historical data are not collected brokers. In
some cases, the Data Shadow is a feature provided by the
IOT services for example SigFOX, The Things Network
services. On the other end, in full stack infrastructure, the
data shadow has to be implemented to allow collecting data
for data analytics, machine learning and in general for data
analysis, drill down on time, anomaly detection, etc. In
Snap4City, Data Shadow module collects in a persistent data
storage the data generated by all IOT Devices as time series
with needed contextual enriched data to facilitate the
indexing. In fact, the indexing is another relevant plus of
advanced data shadow, that in most of the IOT Services, as
SigFOX, The Things Network, is not provided. The Data
Shadow can be also used by ETL processes. This approach
allows treating both periodic and even driven data uniformly
and thus may simplify the access to the historical data for all
kinds of data sources.

In Data Shadow activities of data indexing for creating a
Scalable Index are performed. This component can be
implemented with different solutions as described in the
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sequel of the paper. To this end, two competing solutions
may be used for example SOLR Cloud and Elastic Search
Cluster, have been considered. The produced index has to be
scalable, has to capable of providing services via API REST
Call and has to be efficient in terms of memory consumption.
Section III, two different technologies (Solr Cloud and
Elastic Search) are compared in in terms of performance in
Section IV. With the aim of realizing a Visual Analytic tool
(as Tech Dashboard System, see Section V) that has to
provide support for understanding eventual dysfunction and
anomalies, thus the data shadow index need to be browsed
with faceted solution in space, time, relationships. Details on
this regard are reported in the rest of the paper.

Smart City API is a layer of REST Call API which abstract
from the complexity of the Smart City Back office. A
number of services are accessible via Smart City API [14],
[3]. Among the most relevant services, there are the API for
accessing to semantic queries for spatiotemporal searches,
full text search on KB elements, search on data shadow,
search on historical data, search on data analytics results, etc.
[3]. All the high level applications and services communicate
through Smart City APIs, for many different purposes,
dashboards, web and mobile Applications [13], [14].
Applications for the final Users (public administrations,
citizens but also system managers) are based on Smart City
API, in form of visual and interactive tools allowing the
creation of Mobile and web Apps, as well as graphic
dashboards, thanks to the presence of the City Dashboard
System [15].

I1I.

For the Data Shadow, the NIFI processes collect and enrich
data (i.e., IoT and ETL) regularizing and enriching (as
described above) them towards a unified structure that is
adopted in the index: (<dl1, v1>, ..., <d16, v16>), where the
keys d1, ..., d16 as described in TABLE I. The unified data
structure has been obtained generalizing data models
communing from multiple IOT devices/Brokers and ETL
processes, thus producing an unified interoperable IOT/ETL
Data index.

DATA INDEXING LAYER

TABLE L. UNIFIED DATA STRUCTURE FOR DATA SHADOW
Key Id Description
d 1d Numerical Id of the IoT device or ETL data
! source.
d; serviceUri URI of the ToT device or city entity.
d; sre Data source kind (loT or ETL).
dy kind Kind of 10T (sensor or actuator)
ds deviceName Name of the IoT device or ETL.
It shows if the device is “healthy”,
d healthiness according to specific rules (based, for
o criteria instance, on value refresh rate) checked by
dedicated scripts in the back-office.
Unique identifier of the IoT device or ETL
d; sensorlD
data source.
Date and time related to the instant in
ds date_time which the measure/data has been provided
by the IoT device or ETL.
do latlon Pair of latitude and longitude coordinates.
d colocation Special geolocation format for
10 8 geographical faceting functionalities.
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Key Id Description
The type of data representing the measure
di data_type provided by the IoT device or ETL
(integer, float, string. etc.).
lue refresh Frequency to which data or measure is
dp; vaiue ff resh_r provided (used also for checking the
ate above-described healthiness criteria)
Type of the measure provided by the [oT
di; value_type device or ETL (temperature, humidity,
speed etc.)
dyy value Actual value of the provided measure.
d value name Name of the provided measure
» - (MyRoomTemperature, AirHumidity etc.).
d Oreanization The identiflcation of the organization for
16 8 which the data is collected

According to the above description and requirements, the
indexes for Data Shadow could be implemented by using
several different technologies. On the other hand, restricting
the search to Open Source solutions for BigData and high
performance, we focussed the comparison to: SolrCloud and
Elasticsearch. In this paper, we are reporting the comparison
between these two approaches and thus their peculiarities are
described in the following subsections.

A. Solution 1: Solr Cloud (description and architecture)

Apache Solr, [17], is an open source indexing and search
engine that permits rapid searching based on the java library
called Apache Lucene [18]. The base unit in the system is the
Solr document, consisting of fields and field types, which are
defined in the Schema file. Solr provides REST APIs to
allow client applications interact with the system for
indexing and searching. The main features for searching are
Full-text Search, Highlighting, Facet Search, Query
Suggestion and Geospatial Search. In particular, Faceted
Search is a technique that allows exploring data applying
dynamic filters in multiple steps and dividing the results in
Facets, which have one or more values, called the facet
values, used as filter for refining search query, interactively.
A facet counter is associated to each facet value, representing
the number of records matching with this value [19]. In
addition, Pivot Facets can also be considered as decision
trees because they are used for multifaceted hierarchical or
tree searches. These searches allow performing multifaceted
searches on a list of comma-delimited fields, where each
field is recursively faceted from the field listed before it in
the list.

Solr is configured in SolrCloud mode, a distributed
architecture consisting of a cluster of 4 servers/Virtual
Machine on cloud (see Fig. 2). It provides a centralized
configuration scheme, automated failover and recovery, as
well as highly scalable, reliable and fault tolerant
capabilities. The automated failover is implemented through
the integration of a cluster of Apache Zookepeer as a
distributed coordination service, responsible for monitoring
and maintaining the status of the cluster nodes. In the
SolrCloud architecture, the Zookepeer is composed by 3 of
the SolrCloud cluster nodes. SolrCloud has a flexible
distributed indexing and search, without a main node to
allocate nodes, shards and replicas, instead using the
Zookeeper service. In order to make the system fault-
tolerant, the index (called “collection”) in Solr is divided into
shards, which are logical sections of a collection (made up of
one or more replicas) organized in the SolrCloud physical
cluster. In this case, (see Fig. 2), a distributed collection is

created and partitioned on 4 shards (number of servers/VM)
with 4 replicas for each shard.

shard1l

shard2
sensors—ETL-10TvV3

shard3

shards

Fig. 2. SolrCloud Architecture.

B. Solution 2: Elasticsearch Cluster

Elasticsearch [20] is an open source, distributed, highly
scalable search engine which is based on Lucene java library
for indexing and index lookup [21]. It is a document oriented
index in which the document basic unit of information is
represented by an object in JSON format, with a collection of
fields. However, there is not a configuration file
corresponding to the Solr Schema file; actually, the Mapping
process [22] is used to define how the documents fields are
indexed before adding the first document to the index. Once
defined for a certain index, the mapping cannot be changed.
Elasticsearch has a RESTful API interface which provides
endpoints to perform create, retrieve, update and delete
(CRUD) operations on stored data and endpoints to
configure the cluster using HTTP requests [23]. The
searching functionalities of Elasticsearch are similar to the
ones present in Solr: Highlighting, Query Suggestion and
Spell-checking. It inherits these from Lucene. However, the
Faceted Search functionality is replaced and improved with
the Aggregations Framework, which provide aggregated data
based on a search query [24]. In addition, it is possible to
exploit Nested Aggregations, which allow aggregating a
nested document and creating aggregation hierarchies,
grouping documents based on one or more search criteria.
Elasticsearch uses its own query language called Query DSL
(Domain Specific Language) [25], which uses JSON objects.

Elasticsearch can be installed and configured on a cluster
made up of a number of machines equal/similar to
SolrCloud, in order to consider a completely equivalent
architecture, as in the experiment we performed, as described
in the following. Differently from SOLR, Elasticsearch
cluster is based on the Master-Slave paradigm and for
example may consist of 4 servers (nodes): 1 Master Node
and 3 Slave nodes called Data Nodes (see Fig. 3). Data
Nodes are used for handling queries and indexing, while the
Master node contains all the data structures and plugins
necessary to perform analysis and maintenance through a
user interface.

Data Node 1
Elasticsearch
(Analysis Node) | Data Node 2 l

Elasticsearch

( Master
Elasticsearch

Kibana J g
\g J

e -

Data Node 3 ‘

Elasticsearch

Fig. 3. Elasticsearch Cluster architecture.

Elasticsearch does not use a Zookeeper cluster, like
SolrCloud, since a default built-in module called Zen

1532

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on November 30,2020 at 17:24:35 UTC from IEEE Xplore. Restrictions apply.



Discovery allows the automatic detection of nodes, Master
Node detection and fault detection (bidirectional). As in Solr,
a single index is created and split into shards which reside on
different nodes. The shards are classified in two types:
primary and replica. The primary shard is the place where the
document is stored when it is indexed, while replica shards
are just copies of the primary shard. For example, the index
can be distributed over 5 primary shards and 2 replica shards
for each primary shard, for a total of 15 shards distributed
over 3 Data Nodes. A wide sharding of the index decreases
search times by performing parallel searches across multiple
Lucene instances (shard), as well as making the system more
fault tolerant and scalable with replication shards.

IV. COMPARISON BETWEEN THE TWO SOLUTIONS

In order to compare the two solutions. A cluster of
Virtual Machine has been reserved and used in both
scenarios. Each node in the cluster had: CPU: Intel®
Xeon® Gold 5118, 16 CPUs, 4 cores per CPU, 2.3 GHz, 1
thread per core; RAM: 24 GB; HDD: 500 GB 15krps;
Operating System: Ubuntu 16.04.04 LTS. The reference
data set has been based of 30 million documents for a total
size of 7 Gbyte of data.

The performance analysis has been performed recreating
a realistic workload by executing a set of queries in at the
same time for searching data into the two indexing
architectures: Elasticsearch Cluster and SolrCloud. The test
has been focussed on evaluating performance, reliability and
efficiency. Thus estimating for both the solutions
e response time at request in search, since indexing time

is less relevant in Smart City where the indexing is
performed once and search many times;

e consumption of resources in terms of CPU, memory,
network used by each VM of the cluster.

The testbed has been implemented with a script capable
of performing 15 queries (Requests) to the solutions. The
queries for the workload have been performed through REST
APIs to both the Elasticsearch and SolrCloud Clusters, in
separate sections of the whole test. The 15 queries have been
designed to stress the relevant aspects of the two indexing
architectures according to the requirements described above,
and in particular:

e cxecuting Faceted Search and Facets Pivot on
SolrCloud, and Aggregations and Nested Aggregations
on Elasticsearch;

e requesting sorted results for one or more fields, of
unified model of TABLE 1. ;

e perform textual searches on textual fields of the unified
model of TABLE 1. (e.g., the equivalent of the LIKE
operator used in the SQL language);

e perform temporal filtering on data.
In order to replicate a realistic workload, the processes with
15 queries have been executed several times and in parallel
by a number of processes, obtaining a workload varying
from 150, 750, 1500, 2250, 4500 and 7500 simultaneous
queries. The scripts have been executed on external VMs,
with respect to the two indexing clusters. The Master Node
is the endpoint to query the Elasticsearch Cluster, while the
node constituting the Shard number 4 has been chosen as the
queries endpoint for SolrCloud, and in the case of time out
we shifted to the next.

TABLE II. PERFORMANCE TEST RESULTS OF RESPONSE TIMES FOR
SOLRCLOUD AND ELASTICSEARCH CLUSTER
N“m:’e Elasticsearch SolrCloud
r O]
tests | Parallel | Average Variance Zpeieeg Variance
Request | Response Response
s Time (s) Time (s)
Test 1 150 23,216 0,848 48,669 0,532
Test 2 750 75,097 18,031 407,444 3768,326
Test 3 1500 147,463 153,106 318,046 2633,315
Test 4 2250 484,289 452,823 601,223 10434,492
Test 5 4500 1060,429 2363,393 981,419 10407,077
Test 6 7500 1775,962 281418,250 Cluster Breakdown

The results of the tests, in terms of response times of
Elasticsearch Cluster and SolrCloud, are shown in TABLE
II. From Table 11, it is possible to observe that the average
response time of the two architectures has a linear trend, up
to about 4000 Requests in parallel, even if the Elasticsearch
is better ranked. From 4000 to 4500 requests this trend is
reversed due to the failure of a Data Node of Elasticsearch
Cluster that causes a deterioration of the performance, even
if Elasticsearch Cluster does not stop working and continues
to respond to the incoming Requests, since the Master Node
remains active (in addition to the two Data Nodes). For
4500 requests or more, the comparative analysis was not
possible since SolrCloud crashes (Break Point) due to the
failure of the query endpoint shard (Shard 4), on which the
test queries are executed, hence interrupting the whole
service, neither the others were capable to provide answer to
queries. And thus, a long recovery time of several minutes
after the stopping of the workload was necessary for the
failing Shard to be restored.

The assessment of resource consumption have been
carried out during all the above mentioned test for
estimating the performance in searching. The assessment
have been performed monitoring: “CPU Usage in MHz”,
“CPU Usage (percent)”’; “Memory Active”, “Memory
Consumed” and “Memory Granted”; “Network Data
Receive Rate”, “Network Data Transmit Rate” and
“Network Usage”. These metrics have been collected on
ESX/ESXi servers and vCenter Servers of the Cloud
VMWare vSphere [26]. In this paper, only the most
significant metrics are reported.

In Figures 4 and 5, the typical trends of CPU percentage
are reported during the full testing execution for the above
reported Test 2, Test 3, Test 4 and Test 5, of Table II,
respectively for SolrCloud and Elasticsearch. From the
analysis of CPU resource consumption, it is obvious that
CPU usage is higher in the moments of testing. Regarding
SolrCloud, the virtual machine that most uses the CPU,
compared to other shards, is the Shard 4 (that represents the
query endpoint for testing) with peaks up to 60% (see Fig.
4). On the contrary, for Elasticsearch Cluster, the CPU
usage for all the Data Nodes is comparable (at most 50%),
while the CPU usage of Master Node is quite low with
respect to those of the nodes (see Fig. 5). In fact, the Master
Node has no indexing data inside, and it is only responsible
for lightweight cluster-wide actions such as creating or
deleting an index, tracking which nodes are part of the
cluster, and deciding which shards have to be allocated to
which nodes [27].
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Fig. 5. Usage CPU (%) related to the Elasticsearch Cluster

architecture.

In Figures 6 and 7, the typical trends of memory
consumption in case of stress are reported during the
execution Test 1 and Test 5 or 6 in sequence of Table II,
respectively for SolrCloud and Elasticsearch (in fact Test 6
cannot be executed on SOLR since crashed systematically
for the effort). The “Active Memory” values collected
represent the amount of memory used during the tests
phases.
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Fig. 6. Active Memory in KB related to SolrCloud

architecture.

Please note that, from Figure 6, SolrCloud, the node Shard 4
(query endpoint) uses more memory than the other shards.

In Figure 7, the trend of Active Memory for the case of
Elasticsearch, in which the trend of memory usage of each
server of Elasticsearch Cluster (both Data Nodes and the
Master Node) is comparable. In this case, the time trend
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shows how the use of CPU decreases to zero for Node 1 due
to its failure. However, the architecture does not fail because
the Master Node remains alive, allowing the Elasticsearch
architecture to guarantee the service. The recovery of the
failed node is automatic and guaranteeing the service despite
the high workload, provided to wait for a certain recovery
time. This is also visible with the increment of memory for
Data Node 2. On the contrary, for SolrCloud the architecture
stopped responding to queries when on Test 6 shard 4
crashed for a not affordable workload, and the service
recovered only after several minutes of absence of
workload.

Active Memory (kB)
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architecture.

V. DASHBOARDS BANANA AND KIBANA

Dashboards for visual analytic on the basis of indexes
produced by Elasticsearch and SOLR, can be built using
Kibana [28], [23], for Elasticsearch, and Banana [29] (which
is a fork of Kibana) for Solr. Kibana and Banana are open
source tools for data visualization and provide web-based
interface for view, search and analyse data indexed in
Elasticsearch Cluster and SolrCloud, respectively.

Both tools include a set of classical dashboard widgets to
visualize data, such as: histograms, filters, time-pickers,
facet selection on the different kind of data managed,
heatmaps, pie charts, tables, and also customized panels
created from scratch, such as a the Smart City linked map,
which adds geo-faceting graphical filtering capabilities and
enrich displayed data with Smart City related information
(descriptions and additional metadata, time trends of
indexed data etc.) by integrating the Km4City Smart City
API interface [12]. Banana uses facet search functionalities
of Solr, providing the real time analytic processing layer
which is required for producing dynamic visualizations and
different views. Instead Kibana uses aggregations
functionalities of Elasticsearch.
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Fig. 8. (a) Dashboards Kibana and (b) Banana.
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Banana and Kibana have been used for building two
visual analytic dashboards with almost the same panels for
data visualization (see Fig. 8a and b). A comparison has
been made between the two dashboards measuring the
response time, numbers of (http) requests and transferred
bytes, using Developer Tools of Google Chrome [30].
Response time is the time which is needed to load the two
dashboards (Banana and Kibana) after an action carried out
on any of the dashboard’s widgets. The execution time is
particularly relevant when the facet/cluster actions are
performed since the service has to apply specific filters on
the millions of data and change all views into the panel
according to the filter. For example, restricting the time
frame of analysis, selecting only specific flow of data.

The assessment performed on visual analytics dashboards

are reported in TABLE 1. , and included:

e Dashboard’s loading. First opening of the Visual
Analytic tool on browser with the recent data view.

e QueryA: a drill down operation is performed, which
selects a time frame of interest from the histogram
panel (time filtering).

e QueryB: a temporal filtered search is performed on a
histogram panel, and a Facet Fields filtering is applied
on: device name (field "deviceName"), data type
returned by the sensor (field "value type") and unit of
measure of the returned value (field "value unit").

e  QueryC: a specific sensor is searched by geo-spatial
filtering from the map panel and a temporal range of
interest is selected.

e QueryD: any value of a field from the search bar is
searched, in this case the specific name of a device
(field “deviceName”).

The results are represented on TABLE III. From the

resulting data, it is evident that Kibana-ElasticSearch is

better ranked in complex visual analytic requests, while
when specific value is recovered (such as QueryC) the
performances are comparable.

TABLE IIL AERAGE PERFORMANCE TEST OF DASHBOARD BUILT
WITH BANANA-SOLRCLOUD AND KIBANA-ELASTICSEARCH
Banana- Number Transferred AVG Response
SOLRCloud of Request: Bytes (KB) Time (s)
Dash Loading 186 5900 28,55
QueryA 26 846 11,09
QueryB 76 1900 96
QueryC 175 3300 68,5
QueryD 28 776 14
Kibana- Number Transferred AVG Response
ElasticSercch of Requests Bytes (KB) Time (s)
Dash Loading 57 3500 6,93
QueryA 14 254 38
QueryB 10 52,2 48
QueryC 199 3300 35
QueryD 5 19,4 0,45
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VI. CONCLUSIONS

In the present paper, two distributed and highly scalable
architectures for data indexing and visual analytics for
Smart City platforms have been compared: Solr-Banana and
Elasticsearch-Kibana. Both search engines are based on the
use of the Apache Lucene library. For Solr, the management
of the index in terms of memory allocation is optimized
thanks to the SolrCloud system, which uses the Zookeeper
service to manage the cluster nodes. In addition, a useful
feature that distinguishes Solr is Faceted Search that allows
drilling down on the data. Elasticsearch is designed to be
distributed and scalable, thanks to an easy cluster
configuration. An important feature is represented by the
Aggregations functionality, which aims at providing an
evolution with respect to Faceted Search. Both search
engines provide an intuitive graphical interface (exploiting
the Banana and Kibana tools for building visual analytic
dashboards) for viewing data, performing temporal drill
down, multiple filtering, etc. This paper presented a
performance evaluation, carried out between a SolrCloud
and an Elasticsearch Cluster. By analysing the results of
these performance tests, it is found that Elasticsearch
Cluster present better performance to perform searches
when it is massively queried. Elasticsearch is also more
robust to fault than SolrCloud; actually, when one or more
Data Nodes of the cluster fail, Elasticsearch can guarantee
the service even if at the expense of performances. While
for the distributed SolrCloud architecture, if one or more
Shards fail, in most cases, it leads to the interruption of the
search service and a long time for node recovery. In
addition, a comparison has been made about the
performances between visual analytics dashboards built with
Banana for Solr and Kibana for Elasticsearch. It has been
highlighted how the Kibana proved to be faster in loading
and displaying the results of a search query, as well as when
performing a drill down operation, if compared to the
Banana.
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